
at SciVerse ScienceDirect

European Journal of Mechanics A/Solids 42 (2013) 210e218
Contents lists available
European Journal of Mechanics A/Solids

journal homepage: www.elsevier .com/locate/ejmsol
Evolutionary indirect approach to solving trajectory planning problem
for industrial robots operating in workspaces with obstacles

Fares J. Abu-Dakka*, Francisco Rubio, Francisco Valero, Vicente Mata
Centro de Investigación de Tecnología de Vehículos CITV, Universidad Politécnica de Valencia, Valencia e Edificio 5E e Camino de Vera s/n, 46022 Valencia,
Spain
a r t i c l e i n f o

Article history:
Received 1 July 2012
Accepted 30 May 2013
Available online 19 June 2013

Keywords:
Trajectory planning
Obstacle avoidance
Genetic algorithms
* Corresponding author. Tel.: þ34 96 387 70 07; fa
E-mail address: fares.abudakka@gmail.com (F.J. Ab

0997-7538/$ e see front matter � 2013 Elsevier Mas
http://dx.doi.org/10.1016/j.euromechsol.2013.05.007
a b s t r a c t

In this paper, an indirect method for trajectory planning for industrial robots has been addressed using
an evolutionary algorithm. The algorithm is divided into three stages: (1) The acquisition of Adjacent
Configurations (AC) for Path Planning subjected to kinematics, geometric and obstacle avoidance con-
straints. (2) The acquisition of a collision-free path between initial and goal robot configurations. This
path consists of a set of ACs, and (3) The acquisition of a temporal history of the evolution for the robot
joint coordinates, by minimizing the required time subjected to actuator limits. This algorithm has been
evaluated by comparing the results with the direct procedures proposed by Rubio articles in 2009 and
2010.

� 2013 Elsevier Masson SAS. All rights reserved.
1. Introduction

In the last few decades, the prevalence of robots has grown in
many areas. In addition to industrial applications, robots are also
used in surgery, agriculture, underwater, and for transportation. In
industrial applications, they have many purposes like; pick and
place operations, assembly tasks, spray-painting, and many other
tasks.

In general, the purpose of robotic systems is to perform such
tasks smoothly in as little time as possible. Thus, a procedure of
three stages is proposed to obtain an offline minimum time tra-
jectory planning. The offline trajectory planning is justified as a
large number of robotic applications work in a repetitive manner.

Path planning and trajectory planning problems are two distinct
parts of the robotics that are intimately related. Actually, a clear
difference exists between those algorithms devoted to path plan-
ning problem and those devoted to determining the optimal tra-
jectory for robotic systems. The first ones try, essentially, to obtain a
sequence (“a path”) of robot configurations between an initial and
goal configurations that fulfills some conditions, mainly, collision
avoidance. Whereas, the second one try to obtain a temporal his-
tory of the evolution for the robot joint coordinates by minimizing
aspects such as; the required time or the energy consumption.
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Therefore, path planning is a subset of trajectory planning, wherein
the dynamics of the robot are neglected. In indirect methods, the
path is searched first, and then finding a time-optimal time scaling
for the path subject to the dynamic constraints of the manipulator;
such approaches are known as decoupled (indirect) approaches
(Piazzi and Visioli, 1997, 2000; Saramago and Steffen, 2001; Plessis
and Snyman, 2003; Behzadipour and Khajepour, 2006; Valero et al.,
2006; Bertolazzi et al., 2007; Gasparetto and Zanotto, 2007;
Saravanan et al., 2009). Otherwise, in the direct approaches of
trajectory planning, the search takes place in the system’s state
space (Rubio et al., 2009, 2010; Abdel-Malek et al., 2006). Most of
the existing methods belong to one of these types, although the
indirect methods are the most widely used.

A strategy to optimize the end-effector trajectory and dynamic
behavior in a restricted workspace through spline interpolation is
presented by Saramago and Steffen (1998). Lin et al. (1983)
introduced the first formulation of the problem of finding the
optimal curve interpolating a sequence of nodes in the joint space,
subject to kinematic constraints. The same formulation then
solved by means of cubic B-splines (Wang and Horng, 1990). The
interpolation using cubic polynomial functions is used in multi-
objective optimization problem, aim to minimize the time of
motion and the mechanical energy of the actuators (Saramago
and Steffen, 2001). Trigonometric splines are used to ensure the
continuity of the jerk (Piazzi and Visioli, 2000). Moreover,
different harmonic functions are used for interpolation (Rubio
et al., 2009, 2010).
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Fig. 1. Robot & workspace model.
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In the literature, readers can find many methods to solve the
trajectory planning problem, such as: the Sequential Unconstrained
Minimization Technique (SUMT) by Saramago and Steffen (1998,
1999, 2000, 2001) and Saramago and Ceccareli (2002), the Inter-
val Analysis by Aurelio and Visioli (2000), the Sequential Quadratic
Programming (SQP) by Gasparetto and Zanotto (2007) and Chettibi
et al. (2004), and the Numerical Iterative Procedure by Elnagar and
Hussein (2000). The Traditional derivative-based optimization
methods are designed to solve continuous and differentiable
minimization problems, as they use derivatives to determine the
direction of descent. However, using derivatives is often ineffective
with discontinuous, non-differentiable or stochastic objective
functions. For non-smooth problems, methods such as the genetic
algorithm (GA) are effective alternatives.

In the last two decades, evolutionary algorithms such as Niched
Pareto Genetic Algorithm (Horn et al., 1994), Multi-Objective Ge-
netic Algorithms (Fonseca and Fleming, 1995), Elitist Non-
dominated Sorting Genetic Algorithm (Deb et al., 2002), Multi-
Objective Differential Evolution (Babu and Anbarasu, 2005), and
Steady-State Genetic Algorithms (SSGA) (Abu-Dakka et al., 2007a,
2008) among many others, have been applied in the fields of ro-
botics, planning, control, system identification, etc.

In this paper, a composite of three evolutionary algorithms are
used to solve the trajectory planning problem. (1) A SSGA is used to
optimize the path between adjacent configurations, subjected to
collision avoidance constraints. (2) A Parallel Genetic Algorithm
(PGA) procedure is used to obtain a collision-free path (sequence of
adjacent configurations). (3) A PGA approach aims to schedule the
time intervals between each adjacent configurations along the path,
such that the total traveling time is minimized using Clamped Cubic
Spline (CCS). This approach is subjected to kinematics and dynamics
constraints. A comparison of results is presented between the pro-
posed indirect method and the direct methods proposed by Rubio
et al. (2009, 2010). Rubio et al. (2009) proposed a simultaneous
direct approach for the trajectory planning problem for industrial
robots in environments with obstacles, where the trajectory was
created gradually as the robot moves. Their method deals with the
uncertainties associated with lack of knowledge of kinematic
properties of via points since they are generated as the algorithm
evolves. One year later, the same authors Rubio et al. (2010) tested
the simultaneous approach with different interpolation functions.
2. Robot & workspace modeling

In this paper, a wired model for robotic systems has been
considered (Valero et al., 1996), Fig. 1. The robot configuration is
defined in joint coordinates Cj(qi), while theworkspace is defined in
Cartesian coordinates. Moreover, the robot configuration can be
expressed in Cartesian coordinates through a set of points called
significant points gj

mðqiÞ and interesting points ljmðqiÞ, see Fig. 1, to
facilitate the collision avoidance process. The selection of signifi-
cant points is made based on the degrees of freedom of the robot in
theway that they should beminimum asmuch as possible to define
without ambiguity the configuration of the robot. It is important to
emphasize that they do not constitute an independent set of co-
ordinates. In the other hand, the interesting points are obtained
from the significant points and the geometric characteristics of the
robot. Thus, the robot configuration can be expressed in Cartesian
coordinates through those points Cðgjm; ljmÞ. It should be noted that
any robotic system can be modeled in this way by just selecting and
choosing appropriately those significant points that best describes
the robotic system.

An application example, 4 significant points gj
m ¼ ðgj

1;

gj
2; g

j
3; g

j
4Þ and 4 interesting points ljm ¼ ðlj1; l

j
2; l

j
3; l

j
4Þ, Fig. 1, are
used to describe the geometry of PUMA 560 robotic system. By
comparison, authors Rubio et al. (2009, 2010) used 7 significant
points and 5 interesting points.

In this paper, static obstacles are considered. To facilitate and
systematize the calculation of the distances between the robot links
and the obstacles, generic obstacle models have been constructed
in terms of a combination of three basic patterns: spheres, cyli-
spheres, and quadrilateral planes since they are computationally
simple.

The workspace has been modeled in a rectangular prism be-
tween the initial Cinit(qi) and goal Cf(qi) robot configurations. The
end points of the prism’s diagonal (represented by gi

4 and gf4 in
Fig.1) are corresponding to the positions in Cartesian coordinates of
the end-effector of the Cinit(qi) and Cf(qi) respectively. The prism
edges are parallel to the Cartesian reference system.

A uniform grid of points is considered inside the prism. These
points are far a magnitude small enough (Dx, Dy, Dz) to prevent the
existence of obstacles between adjacent points in the grid. Thus,
the workspace contains a discrete set of configurations such that
the position of the end-effector for each configuration must belong
to the previously defined grid.
3. Adjacent configurations optimization

The basic stage of this approach is the generation of a discrete
space of configurations based on the definition of adjacent con-
figurations. The acquisition of a feasible configuration Cj þ 1 that is
adjacent to a given one Cj that satisfies the following three condi-
tions (Abu-Dakka, 2011; Abu-Dakka et al., 2007b):

1. The distance between the end-effector position of Cj þ 1 and Cj

is smaller than the size of the smallest obstacle in the
workspace.

In case of PUMA 560,
���gjþ1

4 � gj
4

��� < the size of the smallest
obstacle.

2. No obstacle can be placed between the configurations Cj þ 1 and
Cj. This is to verify that the distances of each pair of significant
points between configurations Cj þ 1 and Cj are smaller than the
smallest obstacle in the workspace.

In case of PUMA 560,
���gjþ1

l � gj
l

��� < the size of the smallest
obstacle. l ¼ 1,2,3.
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3. The following expression is minimized:���Cjþ1 � Cj
��� ¼ A$

Xm
l¼1

��
gjþ1
l � gjl

�2
x
þ
�
gjþ1
l � gjl

�2
y

þ
�
gjþ1
l � gjl

�2
z

�
þ B$

Xdof
i¼1

�
qfi � qjþ1

i

�2
(1)

where: dof¼ Robot Degree of Freedom.m¼ 4 and dof¼ 6 for PUMA
560. A and B are coefficients to adjust the results. The first
component of the objective function is the distance between sig-
nificant points of the two adjacent configurations to make them
close. The second component is the distance between the current
configuration Cj þ 1 and the final configuration Cf in joint co-
ordinates to make it converge. The Rubio et al. (2009, 2010)’s al-
gorithms by comparison, tried to minimize the distance between
significant points.

3.1. SSGA for adjacent configurations

In this stage, the generation of collision-free and discrete con-
figurations will take place. A methodology of two distinct routines
has been constructed to obtain a collision-free robot configuration
Cj þ 1 adjacent to Cj. In the first place, the inverse kinematic problem
(Craig, 2005) will be used to find the Cj þ 1 for a given end-effector
position g4. If the new configuration Cj þ 1 doesn’t fulfill the con-
ditions, a SSGA procedure will be used to solve the problem. The
SSGA uses overlapping populations. This means, the ability to
specify how much of the population should be replaced in each
generation. Newly generated offspring are added to the population,
and then the worst individuals are destroyed. Each chromosome
consists of i genes and represents a robot configuration.

chromosome ¼ fq1; q2; /; qig (2)

where: i ¼ 6 for the PUMA 560 robot.
The population in this algorithm consists of 30 individuals

(chromosomes). The initial values for each gene in the initial pop-
ulation have been selected randomly from the interval [qi, min, qi,
max] (the maximum and minimum values of the joint variables of
the robot). However, by looking to the adjacent configuration
definition, it can be seen that the displacement from the configu-
ration j to j þ 1 is very small. Consequently, that interval can be
modified to a new one by adding/subtracting an arbitrary small
amount Dq to qji. This Dq depends on the discrete increment size.
Therefore, the new interval for each qi can be calculated as shown in
the flow chart in Fig. 2.

A roulette-wheel selection method is applied to select in-
dividuals for crossover and mutation. This method based on the
magnitude of the fitness score of an individual relative to the rest of
Fig. 2. Joints interva
the population. The higher score, the more likely an individual will
be selected.
4. Path planning

In path planning problems, the number of feasible paths be-
tween the initial and final positions of a robot are often very large,
and the goal is not necessarily to determine the best solution, but to
obtain an acceptable one according to certain requirements and
constraints. Various search methods have been developed (e.g.,
calculus-based methods, enumerative schemes, random search
algorithms, etc.) for the robot path-planning problem. In this paper,
a GA has been used to minimize the traveling distance of the sig-
nificant points between the initial and final configurations avoiding
obstacles.

The GA for path planning uses parallel populations with a
migration technique. The GA has multiple, independent pop-
ulations. Each population evolves using SSGA, but at each genera-
tion, some individuals migrate from one population to another. The
migration algorithm is deterministic stepping-stone; each popu-
lation migrates a fixed number of its best individuals to its
neighbor. The master population is updated each generation with
the best individual from each population.

The chromosome consists of a set of genes, each gene represents
the end-effector position. The gene consists of three cells that
represent the x, y, and z coordinates of the end-effector position.

chromosome ¼
n
ðX1; Y1; Z1Þ; /;

�
Xf ; Yf ; Zf

�o
(3)

The objective here is to minimize the summation of the dis-
tances between the significant points between each pair of adja-
cent configurations along the path (Abu-Dakka, 2011):

Minimize

8<
:
Xn�1

i¼1

Xm
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
giþ1
j �gij

�2
x
þ
�
giþ1
j �gij

�2
y
þ
�
giþ1
j �gij

�2
z

s 9=
;
(4)
5. Trajectory planning

In this section, an optimization algorithm has been built using
parallel-populations genetic algorithms to obtain minimum time
cubic spline trajectories for a given sequence of configurations
subjected to dynamic constraints of the robot. This choice can be
justified by the well-known characteristics of cubic spline func-
tions; continuity of second order is guarantied and their lower or-
der greatly limits oscillations. The velocities at the ends of the path
are considered to be Zero, such that v0 ¼ 0 and vn ¼ 0.
l determination.
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5.1. Objective function

Minimize
Xn�1

j¼1

tj (5)
subjected to

Kinematicconstraints

8>><
>>:
Joint velocities :

��� _qjiðtÞ
���� _qmax

i

Jointaccelerations :
���€qjiðtÞ

���� €qmax
i

Joint jerks :

�����q0
j

iðtÞ
������q

0max

i

(6)

Dynamicconstraints

8><
>:
Joint torques :

���sjiðtÞ
���� sj;max

i

Joint power :
���PjiðtÞ

����Pj;max
i

Joint energy :
���EjiðtÞ

����Ej;max
i

(7)

Payload constraint Fgmin � F � Fgmax (8)

where: i ¼ 1 to the number of the degrees of freedom of the robot,
j ¼ 1 to the no. of nodes in the trajectory, F is the grasping force,
Fgmin ¼ 0 and Fgmax ¼ 60 N are the minimum and maximum
grasping forces used in the industrial application example, Section
6.3. The grasped object masses (payload) used are 1 kg and 0.5 kg in
the applications 1 and 2 respectively.

For industrial applications, the speed of operation affects the
productivity. To maximize the speed of operation, the traveling
time for the robot should be minimized. Thus, the optimization
problem is to adjust the time intervals between each pair of adja-
cent configurations such that the total traveling time is minimal.
Specifically, the problem is to determine a set of optimumvalues for
time intervals t1, t2,., tn � 1. Note that there are N joints whichmust
be considered simultaneously.

Let Q be the set ofm configurations that compose the path, Qj(qi,
j) and Qj þ 1(qi, j þ 1) two adjacent configurations belonging to Q
which are expressed in joint variables. The trajectory between
these two configurations can be written in a polynomial form as,

qij ¼ aij þ bijt þ cijt
2 þ dijt

3 (9)

where: i ¼ 1, 2,., dof and j ¼ 1, 2,., m � 1.
The smoothness of the trajectory can be guaranteed by imposing

the following conditions:

� Position;

For each interval j the initial and final position must fit Qj and
Qj þ 1, obtaining (2$dof$(m�1)) equations.

� Velocity;

The velocities at the ends of the path must be zeros. This will
contribute (2$dof) equations. On the other hand, between inter-
mediate configurations, the velocities at the end of an interval must
be the same as the initial velocities of the following interval. This
will contribute (dof$(m � 2)) equations.

_qij

0
@t ¼

Xn
j¼1

tj

1
A ¼ _qi;jþ1ð0Þ (10)
� Acceleration;

In the intermediate configurations, the acceleration at the end of
an interval must be the same as the one at the beginning of the next
interval. This will contribute (dof$(m � 2)) equations.

€qij

0
@t ¼

Xn
j¼1

tj

1
A ¼ €qi;jþ1ð0Þ (11)

The previous conditions define a (4$dof$(m�1)) linear inde-
pendent system of equations when the time between successive
configurations of the sequence Q is known.

A GA procedure with parallel populations with migration tech-
nique has been implemented to optimize the time intervals needed
to move the robot between adjacent configurations in the pursued
trajectory.

6. Numerical examples

Object Oriented Cþþ code has been implemented and executed
using a computer with Intel Xeon CPU E5440 @ 2.83 GHz and 8 GB
of RAM. For genetic algorithm procedures, the MIT Genetic Algo-
rithm Library (Wall, 1996) has been used and adapted to the
problem environment.

In this Section, application examples are particularized for the
PUMA 560 robotic system and have been implemented and
analyzed to evaluate the efficiency of the proposed algorithms.
Three operational parameters have been used for the evaluation:

(a) Execution Time (te): The time needed for the robot to execute
the trajectory.

(b) Traveled Distance (ds): The summation of the distances be-
tween significant points of each pair of adjacent configurations
along the path.

(c) Computational Time (tc): The time consumed by the computer
for calculations.
6.1. First Group: Comparison with Rubio et al. (2009)

This group consists of 20 examples obtained on the basis of 5
different initial and final robot configurations. Each one has been
solved in 4 different workspaces. starting from the case without
obstacles finishing with the case of 3 obstacles. The authors Rubio
et al. (2009) compared their results by using three different ap-
proaches; A*, uniform cost (UC), and greedy (G).

The Cost function H(j þ 1) associated to UC strategy allows the
robot to arrive the node jþ 1 from node j, and can be separated into
two terms:

(a) f(j) is an indicator of the cost to reach node j. This value can be
calculated since the configuration Cj has been reached.

(b) c(j, j þ 1) is an indicator of the cost to go from configuration Cj

to another adjacent Cj þ 1.

The total cost function associated to the UC can be grouped like
this:

Hðjþ 1Þ ¼ f ðjÞ þ cðj; jþ 1Þ (12)

The A* algorithm is based in heuristic functions. The A* algo-
rithm in Rubio et al. (2009) had been created by adding an esti-
mation to the UC function to estimate the cost to go from the
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current configuration of the robot to the final one Cf. Thus, the
terms of the A* are the previous terms of the UC plus the following
one:

(c) h(j þ 1, f) that corresponds with an estimation of the cost to go
from adjacent configuration Cj þ 1 to final configuration Cf. It is a
heuristic function, in so far as an under estimation is produced
about what could cost to arrive from the current node to the
final one.

The total cost function associated to the A* algorithm can be
grouped like this:

Hðjþ 1Þ ¼ f ðjÞ þ cðj; jþ 1Þ þ hðjþ 1; f Þ (13)

The cost function associated to a greedy search only considers
the estimation of the cost to go from the current configuration to
the goal (final) configuration. The total cost function associated to
the greedy search can be expressed as this:

Hðjþ 1Þ ¼ hðjþ 1; f Þ (14)

Rubio et al. (2009) stated that, the A* algorithm and the greedy
strategy are different with different properties. The A* algorithm is
complete, and it gives optimal results (sure, in terms of the cost
Fig. 3. First Group, Comparison with Rubio et al. (2009)

Fig. 4. First Group, Average of GA results w
function used), while the greedy strategy, does not guarantee that
the solution is optimal and even may not find any solution.

Figs. 3e7 summarize the main comparisons of this group of
examples. For more details about the Rubio procedure, please refer
to Rubio et al. (2009).

6.2. Second Group: Comparison with Rubio et al. (2010)

This group consists of 20 examples obtained on the basis of
10 different initial and final robot configurations. Each one has
been solved in 2 different workspaces; the case without obsta-
cles and the case with 1 obstacle. The authors Rubio et al. (2010)
used harmonic functions for interpolation and they analyzed
their results by using three different interpolation cases; F5, F7,
and F8.

The F5, F7 and F8 functions represent mainly harmonic inter-
polation functions to model the joint kinematic evolution though
the complete trajectory and they are used because they prevent the
dynamic incompatibilities from appearing. For example, F5 uses the
following equation:

qij ¼ aijsinðtÞ � bijcosð2tÞ þ cijsinð3tÞ � dijcosð4tÞ (15)

In, the other hand, F7 uses the following equation.
, Comparing Execution Time and Traveled Distance.

ith respect to A* in Rubio et al. (2009).



Fig. 6. First Group, Average of GA results with respect to G in Rubio et al. (2009).

Fig. 5. First Group, Average of GA results with respect to UC in Rubio et al. (2009).
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qij ¼ cosðtÞ	sinðtÞ	aijsinðtÞ þ bij

þ cij


þ dij (16)
while the F8 uses

qij ¼ sinðtÞ	cosðtÞ	aijsinðtÞ þ bij

þ cij


þ dij (17)

In their paper, they tried to analyze which one gives the best
results.

The next Table 1 and Figs. 8e10 show the comparisons of this
group of examples. For more details about the Rubio procedure, the
reader can refer to Rubio et al. (2010).
Fig. 7. First Group, Computational Time (s) Comparison with Rubio et al. (2009).
6.3. Industrial application

This group consists of scenarios of industrial applications to
demonstrate the ability of the algorithm to adapt to any environ-
ment. The illustrative manipulator task consists in transporting a
payload from an initial configuration to a final one.

6.3.1. Application # 1
In the example shown in Fig. 11, the execution time

te ¼ 1.52102 s, the traveled distance ds ¼ 3.2619 m, and the
computational time tc ¼ 11893 s.

6.3.2. Application # 2
In the example shown in Fig. 12, the execution timewithout and

with obstacles te ¼ 2.42217 and 3.85854 s respectively, the traveled
distance without and with obstacles ds ¼ 4.7870 and 5.2227 m
respectively, and the computational time without and with obsta-
cles tc ¼ 12915 and 57080 s respectively.
Table 1
Average Values of te ¼ Execution Time, ds ¼ Traveled Distance, and
tc ¼ Computational Time.

te(s) ds(m) tc(s)

GA 1.9664 1.8639 4411
F5 in Rubio et al. (2010) 98.1163 2.3053 5429
F7 in Rubio et al. (2010) 81.6604 2.2872 2329
F8 in Rubio et al. (2010) 71.5478 2.2044 2854



Fig. 8. Second Group, Execution Time (s) Comparison with Rubio et al. (2010).

Fig. 9. Second Group, Traveled Distance (m) Comparison with Rubio et al. (2010).
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Fig. 10. Second Group, Computational Time (s) Comparison with Rubio et al. (2010).

Fig. 11. Third Group, Industrial Application # 1.

Fig. 12. Third Group, Industrial Application # 2.
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7. Conclusion

In this paper, a new three-staged evolutionary algorithm for
trajectory planning problem for industrial robots in connection
with obstacle avoidance has been presented, in this case exem-
plarily shown for different workspace scenarios using a PUMA 560
six-axis manipulator. This method combines three formerly known
evolutionary algorithms to solve the three stages, which are (1)
acquisition of possible and collision-free configurations using SSGA,
(2) path planning with minimum path length under kinematic
constraint and (3) minimum time trajectory planning conditioned
by the robot’s dynamics. The main benefit of the presented method
is its performance increase compared to common methods con-
cerning execution time and traveling distance.

Working in a discrete configuration space implies generation of
configurations that affecting the results. The offline trajectory
planning of the robot was formulated using cubic spline functions.

A comparison of results has been established between the
proposed algorithm and the algorithms introduced by Rubio et al.
(2009, 2010). Two complete groups of numerical examples were
presented and compared. In the first group, the execution time
resulting from the GA procedure presented an average 6.21% of the
values presented by Rubio et al. (2009, 2010), while the traveling
distance presented 78.95% of the Rubio et al. (2009, 2010)’s values.
In the second group, the execution time average is 2.35%, while the
traveling distance average is 82.27%. Moreover, it can be seen that
the Rubio et al. (2009)’s algorithm sometimes did not succeed in
finding a solution, while the presented procedure always
succeeded.
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